SR-PredictAO: Session-based Recommendation with High-Capability Predictor Add-On Ruida WANG, Raymond Chi-Wing WONG*, Weile TAN

The Hong Kong University of Science and Technology Kowloon

Hong Kong SAR

Code: <u>https://github.com/RickySkywalker/SR-PredictAO-official.git</u>

AGENDA

Issues

Background & Motivation 3 5 Methodology 7 Experiment 14 Takeaways 22

Background

- 1. Next-item recommender systems:
 - Predict the user's subsequent behavior Ο
 - Valued in both industry and academic for its Ο commercial value
- 2. Session-based recommendation (SR):
 - Hot topic of the next-item recommender Ο
 - Make recommendations based on the previous item Ο clicks within a single session

Motivation

- 1. Recommendation system:
 - Direct commercial value Ο
 - Provide valuable information about human behavior Ο
- 2. Session-based recommendation:
 - Inter-session dependency is strong [6] Ο
 - Additional user information may not be available Ο (privacy protection)
 - Friendly to cold-start scenario Ο

Outstanding Issues

Issue 1: Low-capability predictor module

- Most SR models follows encoder-predictor design past research focus on different designs of the encoder modules.
- The **predictor** modules of most (if not all) existing SR models are **linear models**, which are **low-capability**.
- The predictor module should simulate the complicated decision process of a user.

Input Session

Outstanding Issues

Issue 2: *Overfit problem* of a high-capability model

- Extremely high-capability model suffers from the serious overfit problem
- The predictor module needs to be an appropriate high-capability model

Issue 3: Random user's behavior in the input session

- A session can include any random behavior of the user
- e.g., Multi-intention problems: the user can be distracted from her/his original intention
- We model the general randomness as noise in the input.

Our solutions

Issue 1: low-capability predictor module

> Issue 2: overfitting problem

Issue 3: random user's behavior

SR-PredictAO (<u>Session-based Recommendation</u> with <u>Predictor A</u>dd-<u>O</u>n)

Neural Decision Forest (NDF) model

Pruning methods in the NDF model

Random user's Behavior Alleviator

Methodology

NDF-SR

<u>N</u>eural <u>D</u>ecision <u>F</u>orest for <u>S</u>ession-based <u>R</u>ecommendation (NDF-SR) involves:

- Random User's Behavior Alleviator based on James-Stein Estimator (JSE-SR)
- 2. Neural Decision Forest (NDF) model
- 3. Pruning method for NDF

Random User's Behavior Alleviator

- 1. As mentioned, due to limited background information within the session, there are many random user behaviors that hard ob to remove, which are typically represented as "noise" in the data. (normally, $z \sim \mathcal{N}(\mu, \sigma^2)$)
- We identified that widely used Most Likelihood Estimators ^{tru} (MLEs) has a high irreducible noise
- 3. To reduce such noise, we propose using a more noise-
- 4. We have JSE-SR, to alleviate general random user behavior in the session. (Detailed proof in paper)

Neural Decision Forest (NDF) Model

- 1. The motivation to use a tree-based model is because of its famous high-capability (or high Degrees-of-Freedom).
- 2. However, the traditional tree-based model has no gradient and cannot be optimized with an encoder.
- Thus, inspired by [7], we propose an NDF-enhanced predictor for the session-based recommendation system.
- 4. We control the overfitting problem by developing a pruning method that randomly drops some leaves.

Theoretical foundation

- Generally, a tree-based function can be understood as a simple function
- 2. By Approximation of Measurable Functions by Simple Functions Theorem: Consider the measurable function $f: X \to \mathbb{R}$ on a measure space (X, \mathcal{M}, μ) . Then $\forall \epsilon > 0, \exists$ simple function ϕ s.t.: $\mu(\{x \in X : |f(x) - \phi(x)| > \epsilon\}) < \epsilon$

The convergence of such sequence can be uniform under $X - S_0$ under condition for $\mu(S_0) = 0$

3. However, the linear function with neural networks often struggles with highly discontinuous functions that have sharp changes

Methodology

Experiment

Base Models: LESSR [1], SGNN-HN [2], DIDN [3]

• We denote SR-PredictAO with base model M as "SR-PredAO(M)"

Datasets: Diginetica¹, Yoochoose²

• For the Yoochoose dataset, we use the most recent 1/64 for experiments, denoted as "Yoochoose 1/64"

Evaluation Metrics: commonly used HR@20 (Hit Rate) and MRR@20 (Mean Reciprocal Rank)

- HR(a)20 is denoted as Recall(a)20 or P(a)20 in some related works. Baselines:
- Traditional methods: Item-KNN; GRU-based method: GRU4REC; Transformer-based method: STAMP, and SR-IEM; GNN-based method: SR-GNN, and base models

Dataset Statistics

Statistic	Yoochoose 1/64	Diginetica		
# of Clicks	$565,\!332$	982,961		
# of Training Sessions	$375,\!625$	$647,\!523$		
# of Test Sessions	55,896	71,947		
# of Items	17,792	43,097		
Average length	6.14	5.12		
TADIE I. Chatleding of 1 the set				

TABLE I: Statistics of datasets

Experiment

Mothod	Diginetica		Yoochoose 1/64		
wiethou	HR@20	MRR@20	HR@20	MRR@20	
Item-KNN	35.75	11.57	51.60	21.81	
GRU4REC	29.45	8.33	60.64	22.89	
STAMP	45.64	14.32	68.74	29.67	
SR-IEM	52.35	17.64	71.15	31.71	
SR-GNN	50.73	17.59	70.57	30.94	
LESSR	51.71	18.15	70.94	31.16	
SR-PredAO(LESSR)	53.10	18.38	71.73	31.70	
Improvement (%)	2.7	1.3	1.1	1.7	
p-value	$< 10^{-5}$	-	$1.8 imes10^{-3}$	-	
SGNN-HN	55.67	19.12	72.06	32.61	
SR-PredAO(SGNN-HN)	55.91	19.06	72.62	32.47	
Improvement (%)	0.4	-0.3	0.8	-0.4	
p-value	0.179	-	$1.8 imes10^{-2}$	-	
DIDN	56.22	20.03	68.95	31.27	
SR-PredAO(DIDN)	57.86	20.49	69.50	31.44	
Improvement (%)	2.9	2.3	0.8	0.5	
p-value	$< 10^{-5}$	-	$2.3 imes10^{-2}$	-	

SOTA Performance

Session-Based Recommendations on Diginetica

~ for	All models			~
			SR-PredAO+[DIDN
	(
2	022	2022		0.2.4
Z	022	2023	2	2024

SOTA Performance

Session-Based Recommendations on yoochoose1/64

View	HR@20	~	by	Date		\sim
					_	_
			SR-Pr	edAO+SC		1
2022		2023		1	2024	

Ablation Study

SR-PredictAO with three different base models Ablation Study:

- Full model
- Without Random User's Behavior Alleviator
- Without NDT-pruning

Dataset	type	LESSR	SGNNHN	DIDN
Diginetica	full model	53.15	55.91	57.86
	w/o Alleviator	52.99	55.79	57.33
	w/o Pruning	53.06	55.78	57.26
YC 1/64	full model	71.73	72.62	69.50
	w/o Alleviator	71.67	72.58	69.26
	w/o Pruning	71.66	72.58	69.20

Quantify model capability

- We use **Degrees-of-Freedom (DoF)** to define the **capability** of a model formally. \bullet
- Given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^M$, and $y_i = f(\mathbf{x}_i) + \varepsilon_i$. •

The model we fit to estimate f is denoted as \hat{f} , and the prediction is \hat{y}_i

- The Degrees-of-Freedom (DoF) is defined as $DoF(\hat{f}) = \frac{1}{\sigma^2} \sum_{i=1}^{N} D_i f_{i-1}$ lacksquare
- We perform DoF analysis of the NDF-SR module on two generated datasets with the following lacksquareunderlying functions:

MARSadd:
$$y_i = 0.1e^{4x_{i1}} + \frac{4}{e^{-20(x_{i2}-0.5)}}$$

POWERadd: $y_i = \sum_{j=1}^5 x_{ij} + \sum_{j=6}^{10} x_{jj} + \sum_{j=6}^{10}$

$$\hat{f}_{i} = \hat{f}(\boldsymbol{x}_{i}).$$
$$= 1 \operatorname{Cov}(\hat{y}_{i}, y_{i})$$

$+ 3x_{i3} + 2x_{i4} + x_{i5} + \varepsilon_i$

$$arepsilon_i$$

- 1. From the above plots, we can see that by controlling the hyperparameters (depth & pruning rate) of the model, we can control the **DoF** of the **NDF-SR** module in a wide bandwidth.
- 2. The results proves that our framework can provide the predictor module with sufficient and **appropriate** capability

Takeaways

- We are the first to discover the important **low-capability** issue in the **predictor** module of most (if not all) existing models, such an issue lowers their prediction accuracy.
- We propose a framework called *SR-PredictAO* which could be applied to any existing models following the common encoder-predictor paradigm.
- Extensive **experimental results** on two public benchmark datasets show that when framework SR-PredictAO is applied to three existing state-of-the-art models, their performances are **consistently improved** by up to 2.9% on HR@20 and up to 2.1% on MRR@20.

Future Work

- The cost of the SR-PredictAO framework is relatively high when the number of leaf nodes is large. Thus, how to develop an **efficient tree-based method** is a potential direction.
- Explore the application of the **tree-based enhancement** in **other fields** such as **language** and **vision** modeling
- The **theoretical foundation** for neural-based trees also needs to be built up by future studies

References

- [1] T. Chen and R. C.-W. Wong, "Handling information loss of graph neural networks for session-based recommendation," in Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020, pp. 1172–1180.
- [2] Z. Pan, F. Cai, W. Chen, H. Chen, and M. de Rijke, "Star graph neural networks for session-based recommendation," in Proceedings of the 29th ACM international conference on information & knowledge management, 2020, pp. 1195–1204.
- [3]X. Zhang, H. Lin, B. Xu, C. Li, Y. Lin, H. Liu, and F. Ma, "Dynamic intent-aware iterative denoising network for session-based recommendation," Information Processing & Management, vol. 59, no. 3, p. 102936, 2022.
- [4] Zheng, Y., Liu, S., Li, Z., & Wu, S. (2020, November). Dgtn: Dual-channel graph transition network for session-based recommendation. In 2020 international conference on data mining workshops (ICDMW) (pp. 236-242). IEEE.
- [5] Wu, S., Tang, Y., Zhu, Y., Wang, L., Xie, X., & Tan, T. (2019, July). Session-based recommendation with graph neural networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 346-353).
- [6] Davidson, J., Liebald, B., Liu, J., Nandy, P., Van Vleet, T., Gargi, U., ... & Sampath, D. (2010, September). The YouTube video recommendation system. In Proceedings of the fourth ACM conference on Recommender systems (pp. 293-296).
- [7] Kontschieder, P., Fiterau, M., Criminisi, A., & Bulo, S. R. (2015). Deep neural decision forests. In Proceedings of the IEEE international conference on computer vision (pp. 1467-1475).

Code link:

Ruida WANG Raymond Chi-Wing WONG* Weile TAN

